

Research Concept for Butterbur

Paul C. Howard, Ph.D.

National Center for Toxicological
Research, Food and Drug Administration

NTP Board of Scientific Counselors 9-10 December 2009

Background/use

- Source: traditionally Petasites hybridus; underground rhizomes, large rhubarb-like leaves; temperate zone in wet soils, damp woods, river ba America, Europe, Asia
- Ancient use: herbal remedy for pain, headaches, fever, skin ulcers, urogenital (dysmenorrhea) and digestive spasms, emmenagogue, coughs.
- Modern use: migraines & tension headache, urogenital and gastrointestinal spasms, asthma, allergic rhinitis, gastric ulcers, pain relief, chronic cough (including whooping cough), chills, anxiety, plague, fever, insomnia, wounds, anti-inflammatory.
- Multiple potential sources: e.g. Petasites formosanus Kitamura
- Available forms: capsule, extract, powder, tincture, softgel.

Background/composition

- Complex mixtures: carbon-dioxide extracts contain sesquiterpenes, fatty acids, aromatics, phytosterols, and unknown compounds
- Sesquiterpenes include petasin and S-petasin (iso- and neoisomers), and furanopetasin:

$$H_2$$
C CH_3 H_3 C CH_3 H_4 C CH_4 C CH_4 C CH_4 C CH_4 C CH_4 C CH_5 CH

 Butterbur extracts: "standardized" to have at least 7.5 mg petasin and isopetasin per 50 mg extract (15 wgt-%); one stated dose is 4.5-7 g extract/day (68-105 mg petasin + isopetasin)

Background/composition

• Petasites hybridus (leaves, rhizomes, etc.) contain hepatotoxic pyrrolizidine alkaloids such as senecionine and integrrimine.

 Manufacturers claim to eliminate the pyrrolizidine alkaloids using extraction methods.

Toxicology/rodent

- Acute LD₅₀ established in Wistar rats (oral, ≥2,500 mg/kg; i.p., ≥1,000 mg/kg)
- Subchronic No data available.
- Reproductive/developmental No data available
- Chronic 26-week oral study with Wistar rats – incomplete
- Initiation/promotion No data available
- Genotoxicity Mutagenic in TA98 and TA100.

Toxicology/rodent

In vitro

- Extracts inhibited histamine and leukotriene induced contractions in guinea pig trachea strips; Ca++ channel blocker.
- Extracts inhibited hexosaminidase release, leukotriene synthesis, and THFa production in sensitized mast cells.
- Petasin inhibited LPS-induced PEG2 release and MAPK activation in microglial cells.

In vivo

- S-petasin modulates endocrine metabolism in rat testicular cells and Leydig cells; *in vivo* and *in vitro*, inhibits testosterone release
- S-petasin decreased heart rate, right atrial firing rate, inhibited left atrium, affected L-type Ca++ channels.
- Vasorelaxation effect on vascular smooth muscle cells.

Toxicology/human

- Clinical studies on Butterbur
 - Some effectiveness against allergic rhinitis and treatment of migraines
 - Questionable effectiveness against asthma and allergic skin disease
 - Adverse side effects of Butterbur use (listed in Background document).
- Epidemiological studies (none).
- Butterbur not recommended for persons who:
 - · Pregnant or nursing.
 - Allergies to Petasites species.
 - Using anticoagulants, barbiturates, or anti-hyperglycemics
 - Liver disease

Nomination and Proposed Testing

- Butterbur was nominated for toxicology studies by NIEHS
- Rationale:
 - Widespread use (dietary supplement; claims of clinical effectiveness).
 - Some constituents are toxic
 - General lack of robust toxicity data for risk assessment
- Proposed tiered toxicity program:
 - Establish consensus Butterbur preparation
 - · In vitro screening
 - Subchronic toxicity
 - · Reproductive/developmental toxicity
 - Carcinogenicity (chronic toxicity)

Test article (consensus preparation)

Butterbur preparation

- FDA and NIEHS collaboration; determine the range of Petasites species used in modern Butterbur preparations.
- Establish extracts of representative preparations.

Pyrrolizidine alkaloids

 The FDA position is that any preparation containing pyrrolizidine alkaloids may be adulterated and therefore may be inappropriate for marketing (confirm levels in consensus preparation).

Acute and Subchronic Studies

• In Vitro Screening

- Chemical characterization of marketed preparations.
- Evaluate activity/toxicity of preparations on market.
- Used to select consensus preparation.

Repeated dose toxicity studies (28-day)

• Standard toxicity endpoints in rats and mice (especially cardio-, neuro-, and hepato-toxicity).

Developmental/Reproductive toxicity

• Conduct pre- and peri-natal exposure in rats (oral route).

Reproductive/developmental and chronic toxicity studies

- Subchronic Toxicity (90-day)
 - Rats and mice, oral route
 - Special study rats for serum hormone levels
 - Standard toxicity endpoints (especially cardio-, neuro-, hepato-toxicity)
- Carcinogenesis (2-year)
 - Rats and mice; oral route

Significance of Proposed Research Program

- Provides toxicological data to enable:
 - (i) quantification of toxicity of Butterbur and constituents;
 - (ii) generation of data for developing risk assessment of Butterbur dietary supplements and herbal preparations.

